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Can we trust Big Data? Applying
philosophy of science to software
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Abstract

We address some of the epistemological challenges highlighted by the Critical Data Studies literature by reference to

some of the key debates in the philosophy of science concerning computational modeling and simulation. We provide a

brief overview of these debates focusing particularly on what Paul Humphreys calls epistemic opacity. We argue that

debates in Critical Data Studies and philosophy of science have neglected the problem of error management and error

detection. This is an especially important feature of the epistemology of Big Data. In ‘‘Error’’ section we explain the main

characteristics of error detection and correction along with the relationship between error and path complexity in

software. In this section we provide an overview of conventional statistical methods for error detection and review their

limitations when faced with the high degree of conditionality inherent to modern software systems.
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Introduction

The surveillance and manipulation of individuals and
populations through computing technologies for com-
mercial or policy purposes raises a range of difficult
philosophical questions. While the most pressing chal-
lenges have an obvious ethical and political component,
we need to understand what levels of control and
insight so-called Big Data allows before we can make
informed decisions concerning its moral status. Thus, in
the paper we argue for a careful assessment of the epi-
stemic status of the computational methods that are
currently in use. These technologies are deployed in
pursuit of particular pragmatic ends in the service of
corporate and political missions. The actions of corpor-
ations and political entities can be evaluated independ-
ently of the technology that they deploy. However, the
extent to which users of Big Data can accomplish their
goals depends on the epistemic status of those technol-
ogies.1 In many contexts, moral and epistemic ques-
tions are inextricably intertwined, and our goal here is
to help lay the necessary groundwork for moral and
political engagement with Big Data by understanding
as clearly as possible how the appearance of Big Data
has changed the epistemic landscape over the past two

decades. What can Big Data technologies allow users to
know, what are the limits of these technologies, and in
what sense is Big Data a genuinely new phenomenon?
Answering these questions is essential for guiding our
moral and political responses to Big Data.

Popular literature on Big Data is often dismissive of
philosophy of science and epistemology. Popular
authors and journalists frequently suggest that the rise
of Big Data has made reflection on topics like causation,
evidence, belief revision, and other theoretical notions
irrelevant. On this view, the turn towards Big Data is a
turn away from concern with a range of traditional
questions in the philosophy of science.2 Big Data,
according to some, ‘‘represents a move away from
always trying to understand the deeper reasons behind
how the world works to simply learning about an asso-
ciation among phenomena and using that to get things
done.’’ (Cukier and Mayer-Schoenberger, 2013: 32)
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This atheoretical turn makes the false assumption that
more data means better inquiry. Worse than merely
being a superficial view of knowledge and inquiry, the
atheoretical stance is blithely uncritical towards the cor-
porations and governments that use technology to ‘‘get
things done’’.3 The assumptions governing the atheore-
tical turn are false and, as we shall see, studying BigData
without taking contemporary philosophy of science into
account is unwise (Frické, 2015). Some of the limitations
and risks involved in the use of computational methods
in public policy, commercial, and scientific contexts only
become evident once we understand the ways in which
these methods are fallible. Thus, in the broader social
and political context, a precondition for understanding
the potential abuses that can result from the deployment
of Big Data techniques by powerful institutions is a care-
ful account of the epistemic limits of computational
methods. A clear sense for the nature of error in these
systems is essential before we can decide howmuch trust
we should grant them and what, if any, limits to their use
we should impose.4

Coming to understand error and trust in these con-
texts involves a range of philosophical and social-
scientific questions. No single scholarly or scientific dis-
cipline has the resources to respond to the questions
and challenges posed by the rise of Big Data. Critical
Data Studies is the interdisciplinary field that has begun
to consolidate around the task of engaging with these
questions. Critical Data Studies has, understandably,
focused on the important political and social dimen-
sions of Big Data. However, this work urgently requires
attention to the assumptions governing the use of soft-
ware in the manipulation of data and in the conduct of
inquiry more generally.

We will argue that critical attention to the formal
features of software is important if we are to get a
proper understanding of the relationship between Big
Data and reliable inquiry. We are friendly critics of
existing work in Critical Data Studies: Our contention
is that the field has neglected highly relevant recent
work in philosophy of science. Critical Data Studies
has correctly recognized that the technology underlying
Big Data has changed the epistemic landscape in
important ways, but has been unclear with respect to
what these changes have been (Kitchin, 2014). Many of
these changes have taken place with the advent of com-
putational methodology in general, but more specific-
ally with the integration of computer simulations into
the toolkit of ordinary scientific practice. Thus, part of
our purpose is to connect debates in philosophy of sci-
ence concerning the status of computational models,
simulations, and methods with the emerging field of
Critical Data Studies. To this end, we explain the role
of epistemic opacity in computational modeling and
close with an example of a basic epistemological

challenge associated with any software intensive prac-
tice, the problem of determining error distribution.
Another feature of software intensive science (SIS)
that philosophers have highlighted in recent years
is the effect that errors in code can have for the reliability
of systems. Horner and Symons (2014a), for example,
explained the role of software error in scientific contexts.
Although primarily epistemic in nature, such con-
siderations have direct implications for policy, law,
and ethics.

As several authors have noted, the term ‘Big Data’
does not refer strictly to size but rather to a range of
computational methods used to group and analyze data
sets (Arbesman, 2013; Boyd and Crawford, 2012). Thus
one cannot responsibly address the epistemic status of
‘Big Data’ without understanding the implications of
the use of software for inquiry. We are not arguing
that philosophers of science have simply solved all the
epistemic problems related to Big Data. In fact, given
the central role of software in Big Data projects, trad-
itional accounts of epistemic reliability drawn from
philosophy of science are likely to prove inadequate
for reasons we explain below.

For some philosophers, the increasingly dominant
role of computational methods is not a matter of sig-
nificant philosophical interest. On this view, there are
no novel, philosophically relevant problems associated
with the increased use of computational methods in
inquiry (Frigg and Reiss, 2009). Others, like Eric
Winsberg (2010) and Paul Humphreys (2009) have
defended the view that computational modeling and
simulation are associated with distinctive and novel
strategies for inquiry. Another recent line of inquiry
that has direct bearing on Big Data involves the prob-
lem of tackling error in large software systems. The
effect that increasing software dependency has wrought
with respect to the trustworthiness of scientific investi-
gation carries over directly to Big Data. Big Data is
part of a changed landscape of problems associated
with the use of computational methods in scientific
inquiry. While the term ‘Big Data’ rarely figures in
the work of philosophers of science, there is now a
large literature that discusses the role of software in
science, particularly insofar as it relates to modeling
and simulation (see for example Frigg and Reiss,
2009; Humphreys, 2009; Morrison, 2015; Winsberg,
2010). Symons and Horner have pointed, for example,
to what they call the path complexity catastrophe in SIS
(see 2014; Horner and Symons, 2014; Symons and
Horner, forthcoming). In this paper, we will argue
that the path complexity catastrophe will have conse-
quences for Big Data projects. We will explain why Big
Data, as a paradigmatic instance of SIS is especially
vulnerable to intractably difficult problems associated
with error in large software systems.
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In ‘‘Introduction’’ section we introduce the many
attempts to define Big Data and explain their limita-
tions. This section has multiple aims. We begin by pro-
viding an overview of Big Data as currently practiced.
Given the diverse uses of the term ‘Big Data’, in this
section we stipulate a working definition that is precise
enough for our purposes and that faithfully reflects the
main features of current usage. The second aim of
‘‘Introduction’’ section is to show the unavoidable con-
nection between the methods used in Big Data and the
software dependence mentioned above. We conclude
that Big Data is an example of what Horner and
Symons call Software-Intensive Science. As such, Big
Data epitomizes the kind of inquiry to which philo-
sophical debates concerning the role of computers in
science should apply.

In ‘‘Big Data meets Critical Data Studies’’ section,
we do several things. First we provide an overview of
recent criticisms of Big Data that originate from the
Critical Data Studies literature. We provide reasons
to think that although they may be important to the
overall characterization of Big Data, the tools deployed
by this interdisciplinary field of study are excessively
anthropocentric and social in their orientation and
are the product of debates in philosophy of science
and social epistemology that have been largely super-
seded by the developments in recent decades. Notably,
since they are generally related to science as a whole,
the insights that derive from socially and historically
oriented scholarship from the 1960s to 1980s shed rela-
tively little new light on the use of software in scientific,
corporate, and policy settings.

The best way to address some of the epistemological
worries highlighted by the Critical Data Studies litera-
ture is to attend to debates in the philosophy of science
concerning computational modeling and simulation.
We provide a brief overview of the principal debates
in ‘‘The epistemic status of Big Data’’ section. In par-
ticular, we focus on issues that relate to what Paul
Humphreys (2009) calls epistemic opacity. ‘‘The epi-
stemic status of Big Data’’ section concludes by
noting that the existing debate in both Critical Data
Studies and philosophy of science has neglected the
issue of error management and error detection. This
is an especially important feature of the epistemology
of Big Data. In ‘‘Error’’ section we explain the main
characteristics of error detection and correction along
with the relationship between error and path complex-
ity in software. In this section we provide an overview
of conventional statistical methods for error detection
and review their limitations when faced with the high
degree of conditionality inherent to software systems
used in Big Data. And finally, in ‘‘Example’’ section
we offer an overview of the limitations exhibited by
Google’s Google Flu Trends (GFT). In particular, we

focus on the ambiguity concerning the sources of such
limitations. These limitations, we argue, exemplify the
deficiencies of an atheoretical approach but most
importantly they also clearly characterize the intrinsic
epistemic challenges posed by large software systems
conventional methods of error detection, correction,
and general assessment.

What is Big Data?

The term ‘Big Data’ arose in the context of challenges
facing engineers dealing with large data sets and limited
computational resources. For example, as noted by Gill
Press (2013), Cox and Ellsworth (1997) introduce the
term ‘‘Big Data’’ in their discussion of challenges invol-
ving the limitations due to memory storage constraints
and processing speed for data visualization at the NASA
Ames Research Center. That paper focused on data sets
that exceeded only 100 Gbytes. Attempts to partition
those data yielded segments that were too large for any
researcher to workwith given the tools and techniques of
the time. Specifically, desktop computers available to
individual NASA engineers in the mid-1990s faced
memory and processing constraints that limited their
capacity to make good use of the data at their disposal.
Cox and Ellsworth (1997) call this ‘‘the problem of Big
Data’’. Contemporary usage of the term ‘Big Data’ dif-
fers in significant ways from this original context. It is
common today for everyday data storage applications to
reliably exceed 100 Gbytes. While there are significant
technical challenges involved in managing large
amounts of data, ‘‘the problem of Big Data’’ as charac-
terized in the 1990s is not the pressing concern it once
was.

Most, if not all, early definitions focused on resource
constraints and data set size. This is not the case today.
In fact, as Boyd and Crawford (2012) note, many data
sets considered to be paradigmatic in the Big Data lit-
erature today are smaller than those used to coin the
term. They cite, for example, the small size of the data
sets involved in analyzing Twitter trends when com-
pared to low-tech research into often very large-scale
data sets generated by the US Census Bureau from the
Nineteenth Century. So, although ‘Big Data’ connotes
the use of large data sets, size is not an essential feature
of current usage of the term.5

Other definitions (e.g. Chen et al., 2014) focus on the
way the different elements of a data set relate and inter-
act. In some cases this is described in terms of the
dynamic interaction of the 3V’s: velocity, variety, and
volume. Whether a set is deemed to be a Big Data set
has to do with the dynamical constraints of these three
factors. Volume is of course size, but variety and vel-
ocity are less easy to define. Variety, for example has to
do with the kind of data in the sets (i.e. pixels vs. nodes)
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while velocity has to do with the physical and temporal
resources required to economically process a set.
Whether these three factors are sufficient to define Big
Data is a topic of ongoing discussion. Some cite the
extra V’s of veracity, value, and visualization as neces-
sary components of a working definition. However,
regardless of the number of V’s one includes, all of
the definitions agree that analytical tools and methods
are a core component of the definition of Big Data
(Chen et al., 2014).

A working definition

In this paper we adopt what we think is the most faith-
ful definition of what Big Data means in contemporary
practice. Here, we follow the analysis provided by Chen
et al. (2014) about the uses of the term in commercial
contexts. They review the range of definitions of Big
Data given by leading corporations in data manage-
ment (for example, International Data Corporation
(IDC), IBM, and Microsoft) before settling on IDC’s
2011 definition. They preface their choice of definition
by stating that ‘‘Big Data is not a ‘thing’ but instead a
dynamic/activity that crosses many IT borders.’’ They
cite an IDC report from 2011 defining Big Data as
follows:

‘‘Big Data technologies describe a new generation of

technologies and architectures, designed to economic-

ally extract value from very large volumes of a wide

variety of data, by enabling high-velocity capture, dis-

covery, and/or analysis.’’ (Gantz and Reinsel, 2011 as

quoted in Chen et al., 2014)

This definition serves to highlight the most important
and distinctive characteristics of Big Data, namely its
use of statistical methods and computational tools of
analysis. It will be particularly important to consider
this definition in detail in ‘‘The epistemic status of Big
Data’’ section. It is in this section that the epistemic
status of Big Data is discussed and in which the case
is made that Big Data, insofar as it is an intrinsically
computer-based method of analysis deployed in
inquiry, is a SIS par excellence. Thus, this definition
is particularly apt since it clearly captures the interplay
between the epistemic, normative, and economic
dimensions of Big Data. Most importantly, this defin-
ition will highlight the limitations concerning error
assessment characterized in ‘‘Error’’ section.

Big Data meets Critical Data Studies

This section presents and clarifies what we take to be
some of the most significant critical studies of Big
Data.6 Althoughwe agree withmany of the observations

made in the existing literature, we think that the crit-
ical scholarship to date has fallen short of addressing
the distinctive epistemic features of Big Data. In part,
this is because most criticisms are focused on the
social level of analysis rather than on any distinctive
features of the technology of Big Data per se. That is
to say, the focus has been on limitations due to
human-centered interactions such as inescapable cog-
nitive and social biases and the overall value-ladenness
of human inquiry. The basic conceptual point made in
the field of Big Data studies is that data must be
interpreted and that interpretation is subject to
human bias. We agree that the processes by which
data is selected and interpreted are important topics
of study. However, they are not unique to Big Data.
Thus, in this section the development of Critical Data
Studies will be connected to its focus on the distinctive
characteristics of Big Data rather than on consider-
ations that could be addressed to human inquiry in
general. In this spirit, and for the purpose of this
paper, we focus on the analysis of error, error distri-
bution assessment, testing and reliability, as they
relate to the computational methods employed by
Big Data.

Error is an epistemic concept and the treatment of
epistemic questions arising from Big Data is in its early
stage. In a recent article in this journal, for example,
Rob Kitchin (2014) argues that there are three main
types of account concerning the epistemic implications
of Big Data. He contends that these derive from differ-
ing general perspectives on the nature of science held by
scholars investigating Big Data. The three perspectives
he identifies are the paradigmatic, the empirical, and
the data-driven. Big Data theorists who follow a para-
digmatic—or Kuhnian model—of scientific inquiry
suggest that science normally functions within settled
patterns and only occasionally advances via radical
shifts in methodology. Advocates of this view contend
that the advent of Big Data constitutes a paradigm shift
of the sort described by Kuhn (Kitchin, 2014). That is,
that Big Data has indeed revolutionized not only the
methods by which we conduct science but also the goals
of scientific inquiry per se. The second camp is that of
the empiricist.7 The motto of this camp is ‘‘the death of
theory’’ (see Anderson, 2008; Cukier and Mayer-
Schoenberger, 2013; Steadman, 2013). They regard
the advent of Big Data and its capacity to detect pat-
terns as replacing theoretical analysis with unrestricted
sampling. On this view, raw data and correlation pat-
terns are sufficient for scientific development. In this
camp, terms such as causation, paradigmatic of scien-
tific inquiry for centuries past, even in their conven-
tional use in science, are regarded as being elusive
and possibly even occult. The third camp, the data-
driven one, is a hybrid of sorts in that ‘‘it seeks to
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generate hypotheses and insights ‘born from the data’
rather than ‘born from theory’’’ (Kelling et al., 2009 as
cited by Kitchin, 2014). According to Kitchin (2014), a
data-driven science is one whose epistemological strat-
egy is to use ‘‘guided knowledge techniques to identify
potential questions (hypotheses) worthy of further
examination and testing.’’ (Kitchin, 2014) This last
camp recognizes a role for conventional scientific
terms and methods beyond mere pattern recognition,
but its hypotheses are derived from the data itself and
not ‘‘just’’ from guiding theoretical principles.

Kitchin (2014) criticizes the first two camps, focusing
primarily on claims made by those advocating the end
of theory.8 According to Kitchin, the so-called empiri-
cists have four main claims concerning the scope, reach,
and assumptions of Big Data:9

1. full resolution (N ¼ All),
2. no a priori (theory/model/hypothesis) needed,
3. agnostic data, and
4. domain transcendence (the assumption that unre-

stricted pattern recognition does away with scientific
specialization).

Given that many problems involving Big Data tech-
niques are of a dynamic nature, in real time and invol-
ving changing demarcations and inputs, the N ¼ All
option is off the table10 (Bollier and Firestone, 2010).
That is to say, in a constantly dynamic landscape, like
the ones often involved in Big Data problems, one can
never be said to have all the data. However, for Kitchin
the problem lies elsewhere. He thinks that the problem
has rather to do with sampling bias that originates in
the technology deployed, the collection methods, and
the data ontology employed in the process. In other
words, the problems with one above have to do with
subjective limitations and biases of the agents conduct-
ing the inquiry. This argumentative strategy is not
unique to Kitchin. It can be found in other widely
cited authors in the Critical Data Studies literature
(see for e.g. Boyd and Crawford, 2012) for whom the
nature of the problems themselves (i.e. dynamic, real-
time problem solving) is not recognized as a constraint
on the quest for full resolution. Instead, they argue that
constraints are due to the subjectivity inherent in the
choice of discretization and the highly value-laden
social aspects of inquiry that inevitably come into play.

Similarly, ‘empiricist’ assumptions 2 and 3 are
rejected by Kitchin on the grounds that whatever meth-
ods allow us to collect and analyze data are already
theory/model-laden to begin with. He explains that
‘‘data are created within a complex assemblage that
actively shapes its constitution’’ and that ultimately,
identifying patterns in data ‘‘does not occur in a
scientific vacuum’’ and is ‘‘discursively framed’’ by

theories, practitioners, and legacy methodology alike
(Kitchin, 2014).

As mentioned above, other Critical Data studies’
authors provide similar criticisms of Big Data. Take
Boyd and Crawford (2012), for example. In their article
(2012) they address the ‘‘death of theory’’ camp, or
‘empiricists’, by questioning their implicit claims to
objectivity. They attack these claims because, according
to them, they are ‘‘necessarily made by subjects and are
based on subjective observations and choices.’’ (Boyd
and Crawford, 2012) They also criticize assumptions 1
and 2 by pointing that massive amounts of raw data are
meaningless unless a question is posed, an experiment
standardized and a sample curated (2012). All of which
are subjective endeavors. This is an insight drawn from
historically and socially oriented philosophy of science.
Kuhn’s work (1962) has been especially influential here,
along with the critical work of philosophers like
Longino (1990) and others.

While Kuhn, Longino, and other mid-to-late 20th
century philosophers have helped shape the contribu-
tions of many in the Critical Data Studies community,
the project of understanding Big Data can benefit from
taking advantage of additional philosophical resources.
Acknowledging that human bias influences inquiry is a
reasonable, but relatively trivial philosophical observa-
tion.11 Since it is applicable to all forms of inquiry at all
levels (Longino, 1990), the recognition of bias is not a
contribution that adds anything distinctive to the study
of Big Data.12 This is particularly the case considering
the developments computer technologies deployed in
the aid of science have undergone precisely in the last
70 years. Unfortunately, the influence of relativistic
philosophy of science has impeded the development
of analyses of the epistemic questions that arise in the
context of Big Data.

Similarly, the emerging field of Software Studies,
which attempts to develop critical perspectives on the
development and use of software, often relies on philo-
sophical literature that although interesting in its own
right, is orthogonal to the core questions that arise
from the use of software. This is particularly problem-
atic since some in the field of Software Studies want to
argue that the use of computational methods, in par-
ticular their capacity to deal with immense data sets in
science and policy-making, does in fact bring about
novel issues to explore (see Amoore, 2011, 2014;
Berry, 2011). Take the following example. In his book
The Philosophy of Software, David Berry (2011) defines
software studies as a research field that includes discip-
lines as broad as platform studies, media archaeology,
and media theory, all of which focus on the develop-
ment, use, and historicity of hardware, operating sys-
tems, and even gaming devices (Berry, 2011). Berry
argues that these technologies not only offer novel
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insight into the human experience, but that they are
also a novel part of it. However, the philosophical
resources that he applies to these issues are restricted
to authors like Kuhn and Heidegger. While these are
deeply significant figures in the history of philosophy,
they offer limited insight into the novel epistemic fea-
tures of computational methods such as Big Data.

Consider another prominent figure in software stu-
dies: Louise Amoore. She addresses security risks in
ways that are relevant to the discussion of Big Data.
She argues that modern security risks’ calculations can
be understood by analogy with financial derivatives
(Amoore, 2011). She offers an analysis of the implica-
tions of Big Data in risk assessment in the context of
border security policy (Amoore, 2011). On her view,
risk posed by individuals can be understood as a prod-
uct of correlational patterns that derive from assorted
data sets that include origin and destination of travel,
meal choice, etc. Security risk, according to her, is con-
strued as an emergent phenomenon, not reducible and
frequently not directly related to the components from
which it arises. Financial derivatives, she argues arise in
the same manner (Amoore, 2011). What she means here
is that derivatives are not mere aggregations of fluctu-
ation in market stocks or patterns in debt, but are
instead a financial instrument in their own right.
Because of the fragmentation and manipulation of
values derived from more conventional financial instru-
ments, derivatives manage to have novel financial prop-
erties that are specific to them. According to her, the
same can be said about risk assessment of individuals
crossing borders that emerge from risk-based security
calculations in contemporary security practice. The risk
travelers pose, although derivative of certain specific
choices and information about an individual, is often
an independent feature that is not found in any of these
choices and informational sets but as a product of an
emergent whole. Although Amoore is indeed talking
about the inherent features of Big Data systems here,
like those involved in border-crossing security systems,
we find that she relies heavily on an anthropocentric
treatment of risk that focuses on policy and decision-
making rather than on the distinctive features of those
systems.13 Big Data systems also involve risks that are
due not only to the effects of design or policy choices,
but also from the nature of the software systems them-
selves. While Amoore correctly points to the emergent
features of large complex systems as important areas of
inquiry, we think that the most important epistemic
problems facing them are due to the characteristic fea-
tures of software systems themselves and not mere con-
tingent limitations on the part of agents.

Insofar as Critical Data Studies understands itself to
be addressing a distinctive area of research, scholars in
this field ought to recognize that Big Data, at its heart,

involves the use of computational methods. The two
principal areas of philosophical inquiry that have
been missing from Critical Data Studies to date are
contemporary philosophy of science and philosophy
of computer science. Connecting these debates to phil-
osophy of computer science is beyond the scope of the
present paper.14 Instead, for the remainder of this
paper, we will demonstrate the relevance of more
recent and growing literature on software, models,
and simulations, in the philosophy of science to ques-
tions of reliability and error in Big Data.

The epistemic status of Big Data

The most distinctive aspect of Big Data, as we argued
above, is the prominence of computational methods
and in particular the central role played by software.
What are the novel epistemic challenges brought about
the use of computational methods? Although there is a
broad debate in philosophical literature about the epi-
stemic implications of the ‘introduction of computers’
into scientific inquiry15 (see Barberousse et al., 2009;
Frigg and Reiss, 2009; Humphreys, 2009; Winsberg,
2010), it is important to recognize, following the work
of Evelyn Keller (2003) that this introduction took
place gradually in a series of distinguishable stages
from the end of the Second World War until relatively
recently. Evelyn Keller (2003) argues that just as the
introduction of computers was itself a gradual process
that posed distinct challenges in distinct disciplines for
different reasons, the epistemic challenges emerged in
different disciplines at different times and at different
stages of technological innovation.

Fox-Keller identifies three main stages. The first
begins with the use of computers to overcome the prob-
lem of mathematically intractable equations in the con-
text of research at Los Alamos in the years immediately
following the Second World War.16 This stage repre-
sents an important deviation from conventional analyt-
ical tools of the sciences at the time because it directly
challenges the well-established use of differential equa-
tions as the main tool in the physical sciences (Keller,
2003). However, when computers were being used at
this stage the primary concern was still to ‘simulate’
conventional differential equations and their probable
solutions using Monte Carlo methods (Metropolis and
Ulam, 1949). In this respect the Monte Carlo methods
are directed towards the solution of equations and are
removed in one step from the phenomena described by
those equations. In other words, methods such as the
Monte Carlo method were not deployed to simulate
any system, but rather to provide a wide range of pos-
sible solutions to differential equations later deployed
in order to understand a given system. With time, stat-
istical approaches to problem solving (like Monte
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Carlo) offered a practical alternative to the differential
equations themselves (Keller, 2003).17

The second stage, according to Fox-Keller, has to do
with the use of dynamic models as representations of a
target system, or ‘‘approximate analogous systems’’
(Frigg and Reiss, 2009). That is to say, the use of com-
puterized calculations was confined ‘‘to follow the
dynamics of systems of idealized particles’’ (Keller,
2003). In this stage, scientists were no longer merely
simulating possible solutions to differential equations
but rather working under an assumed isomorphism
between the observed behavior of a phenomenon and
the dynamics expressed by the artificial system, or com-
puter model, constructed to track its idealized develop-
ment. In other words, the aim was to simulate ‘‘an
idealized version of the physical system.’’ (2003) Fox-
Keller identifies two levels to the use of simulations in
this second stage: (1) substitution of the natural for the
artificial system, and (2) replacement of the differential
equations at the first level for discrete, ‘‘computation-
ally manageable’’, processes.18 This second stage
already posed a challenge to the conventional epistemic
relation between theory construction and modeling.
That is, while the mathematical formulations of the
differential equations had strong and direct ties to the-
oretical principles to back them up, the discretized ver-
sions were now merely approximations without a direct
link to the underlying theory (Winsberg, 2010).
Nevertheless, what these simulations attempted to
represent were entire theories and some would say
that it is only in this second sense that the proper use
of the term ‘simulation’ in its current usage enters the
computational terminology (Hugues, 1999, as cited by
Keller, 2003).19

Finally, the third stage, according to Fox-Keller, is a
reliance on the analysis and model-building of particu-
lar and localized systems rather than generalized theor-
etical ones. Foregoing the wide scope of a full
theoretical framework, this approach focused on the
modeling of internally consistent mechanisms without
generalizable principles or wide ranging laws at their
core. As Keller (2003) notes, this change has important
implications for scientific explanation (see also Symons,
2008).20 This third stage, according to Keller, departs
from the first two in that it ‘‘is employed to model
phenomena which lack a theoretical underpinning in
any sense of the term familiar to physicist.’’ (2003)21

Big Data falls somewhere between first and second
stage of Fox-Keller’s taxonomy. Big Data, we will
argue, is a software intensive enterprise that is focused
on revealing patterns that can be used for commercial,
political, or scientific purposes.22 Unlike the third stage
applications of computational models that Fox-Keller
describes, applications of Big Data are intended to
reveal features of natural or social systems. Big Data

projects are generally not detached from specific prac-
tical applications, nor do they involve testing or
demonstrating new theoretical frameworks.23 Big
Data is a relatively conservative and pragmatically
motivated application of computational techniques,
especially when compared with examples of the third
part of Fox-Keller’s taxonomy.

What is meant by calling Big Data software intensive
is relatively straightforward. Computer scientists call a
system software intensive if ‘‘software contributes
essential influences to the design, construction, deploy-
ment, and evolution of the system as a whole.’’ (IEEE,
2000) Given this definition, by almost any standard, Big
Data, like much of contemporary science, is software
intensive.24

One aspect of the heavy reliance on software by sci-
entific or commercial enterprises is to say that the kinds
of insights available via computational methods would
not be available without the use of software. Embedded
in many of the definitions of Big Data is the assumption
that even just given the vast amount of information
involved, no equation worked by paper and pencil
could in practice be deployed to deal with it (Bryant
et al., 2008). In other words, Big Data deals with prob-
lems where insights would be practically impossible
without the help of computers.

Big Data can also address problems involving com-
plex systems where the relevant dynamics are not obvi-
ously accessible except through surveying vast amounts
of data (see Symons and Boschetti, 2013). In addition
to those problems which would simply require raw
computing power beyond our innate capacities there
are also analytically intractable problems that require
simulation by computer rather than admitting of ana-
lytic solutions.25 Big Data is generally not deployed
because the problems in question are analytically
intractable. However, as we shall see below, computa-
tional models of the kind that are central to Big Data
are of great interest precisely because they promise new
ways to explore phenomena that are difficult to exam-
ine by other means (Barberousse and Vorms, 2014;
Boschetti et al., 2012). As Symons and Boschetti
(2013) note, computational models are currently allow-
ing research into topics where cognitive, ethical, polit-
ical, or practical barriers would otherwise loom large.
Whether in nuclear weapons testing, climate science,
studies of the behavior of epidemics, or studies of the
internal dynamics of stars, to take just a handful of
cases, computational models are often the only viable
research tool for scientists (2012: 809). Similarly, appli-
cations of Big Data science to epidemics, energy usage,
social movements, and the like all have the property of
generating results that are otherwise inaccessible (at
least within any practical timescales and resource con-
straints) without the use of software.
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Another way of thinking about the intrinsic reliance
of Big Data on software is to focus not only on its
methods but also on the nature of its results. These
results mainly involve pattern discovery. We analyze a
set of granular data points in order to detect relational
structures. Consider twitter trends. Millions of short
texts are mined to find concurrent terms or combin-
ations thereof. These are in turn correlated to other
factors related to the authors, i.e. gender, geographic
location, etc. Patterns emerge. But the way we arrive at
such patterns is through the statistical analysis of cor-
related data points. Whether these results are conveyed
via visualizations or mathematical formulas they are
the result of very large numbers of computations. As
discussed above, even just considering the number of
available data points, these methods are computational
and they are so as a matter of practical necessity.

Consider attempting to understand what is going on
inside a star like our Sun. We can know facts about the
center of the Sun. We have indirect means of learning
about chemical composition through spectral analysis
and the like, but other than that, the only ways to draw
inferences about the processes taking place under the
surface of the sun are those made available to us via
computational models. This applies almost by defin-
ition (Gantz and Reinsel, 2011) to phenomena con-
sidered paradigmatic in the Big Data literature. This
is because many of the insights brought about with
Big Data techniques would otherwise be unavailable,
or simply neglected by other analytical methods. Thus
Big Data science is unavoidably software dependent.

In addition to being an intrinsically computational
method, the value of Big Data derives from the patterns
it extracts and the correlations revealed thereby.
However, this means two things. First, tied to the
notion of pattern recognition and correlating millions
of bits of data comes the need to visualize them. Such
patterns and their insights would be of no use if they
were presented to us solely via a spreadsheet and a
mathematical function for example. As we discussed
above the term Big Data was coined because of the
challenging constraints of memory and processing
power but more particularly as they relate to visualiza-
tion.26 Beyond the challenge of static visualization,
many problems in Big Data involve real time inputs
and processing and as such we can say that Big Data
does not just create a static representations but rather
creates artifacts that are more akin to scientific simula-
tions. This is the case for example in the case of
Numerical Weather Prediction systems which not
only process past data to predict future occurrences
but also compare the model’s output to real time sen-
sors tracking the weather (Bauer et al., 2015). It is in
this sense that the model ceases to be merely an
explanatory representation and becomes a simulation

(Weisberg, 2013) whose key insights derive from the
dynamic nature of the visualization (Bollier and
Firestone, 2010).27

Epistemic opacity

Among the most challenging philosophical problems
facing Big Data as a SIS is assessing its role in the
process of creating, gathering, and uncovering new
insights and knowledge. The scientific status of Big
Data is a topic of ongoing debate. Lazer et al. (2014)
have argued that most prominent applications of Big
Data are not properly scientific insofar as the sources of
data are unreliable. Specifically, they argue, the data
that serve as the basis for Big Data projects are not
derived from scientific instruments (Lazer et al., 2014).

By contrast, philosophers of science have debated
whether computer-based methods generate models
that are closer to theoretical abstractions or to empir-
ical experiments (Barberousse and Vorms, 2014;
Morrison, 2015).28 Addressing the epistemic challenges
of computational methods in science Paul Humphreys
(2009) argues that the central problem is the mediation
of our epistemic access to the phenomena of interest.
This is because computational methods can involve an
ineliminable ‘‘epistemic opacity’’ (Barberousse and
Vorms, 2014; Humphreys, 2009), which Humphreys
defines in the following way:

‘‘A process is epistemically opaque relative to a cogni-

tive agent X at time t just in case X does not know at t

all of the epistemically relevant elements of the pro-

cess.’’ (Humphreys, 2009)

Epistemic opacity, understood in this sense is not a new
feature of scientific inquiry, nor is it unique to compu-
tational methods. Humphreys recognizes that a parallel
issue arose with the emergence of Big Science, i.e. when
scientific inquiry became an ineliminably social endea-
vor in which no individual was in control of the com-
plete process of inquiry (Humphreys, 2009; Longino,
1990). However, Humphreys regards the computational
turn in science as generating a qualitatively different
form of epistemic opacity. Some of the problems stem
from lower level operational issues such as the seman-
tics of computational processes. In a relatively obvious
sense, human-level computer languages are already
highly mediated with respect to machine-level imple-
mentation. This results simply from being compiled
through several syntactic layers in order for code to
be accessible to human programmers. Another example
at a higher level are unavoidable numerical discret-
ization choices that enable higher-order representa-
tional features such as visualizations (Humphreys,
2009). According to Humphreys, both features of
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computational techniques represent novel instances of
epistemic opacity.

One concrete example of how the social nature of
software contributes to epistemic opacity in a novel
way is the effect of so-called ‘‘legacy code’’. This is
programming code that has been built by engineers
either using programming languages that have fallen
out of favor or that for some other reason may be dif-
ficult for later programmers to understand. Coding is a
highly creative engineering task and although the code
may do its job appropriately there may, occasionally be
no way for contemporary users to know exactly how it
achieves its function (2009). As a matter of fact, legacy
code is common in computer science. One could argue
that certain analogous legacy methods or processes are
part of traditional big-science projects. However, unlike
say a scientific instrument whose inner workings are
well-understood, it may not be evident how some
piece of legacy software contributes to the functional
role of the whole piece of software. One could easily
imagine being able to reverse-engineer the functionality
of non-software aspects of a scientific project if one
knew its function. However, it is not always the case
that one can understand the function of legacy code in
some large system.

When dealing with legacy code it may prove easier
and more viable to merely work around the already
functioning code, even if no one actually understands
it.29 In big, ongoing projects it is often economically
unfeasible to discard the legacy code and begin from
scratch (Holzmann, 2015). This is particularly the case
with critically important systems whose operation
cannot be interrupted like flight control software. In
such cases the system must be kept running as it is
being patched or updated.

There are other distinctive sources of epistemic opa-
city resulting from the use of computational methods
that have no parallel in other aspects of conventional
scientific inquiry. Consider weak emergence. Weak
emergence is characterized by the emergence of unin-
tended/non-programmed/unexpected behavioral pat-
terns in running simulations (Humphreys, 2009).
Patterns that were not known before the simulation
was turned on and ran (for more on this see Symons,
2002, 2008). Weakly emergent phenomena are charac-
terized, among other things, by their dependence on the
actual running of a simulation. That is to say, there
would be no way of having found those patterns
apart from running the simulation itself. They are the
product of the actual dynamics of the simulation and
cannot be deduced from nor reduced to any of the
elements that conform it (Bedau, 1997).

Reliance on computational methods involves a dis-
tinct kind of epistemic opacity from the social epistem-
ology aspects of human-centered inquiry where the

central issue is the bias and subjectivity inherent in
interpretation. The consequences of this epistemic opa-
city are not easily solved through some simple fix or
revision of appropriate methods to deal with them.
Computational methods, as Humphreys argues are
‘‘essentially epistemically opaque’’ (Humphreys, 2009).
A process is essentially opaque in this way to an agent
at ‘‘if it is impossible, given the nature of X, for X to
know all of the epistemically relevant elements of the
process’’ (Humphreys, 2009).

This last formulation of epistemic opacity serves to
elucidate the kinds of epistemic challenges at play in
our discussion, namely those that are features of the
systems in questions and not merely contingent limita-
tions of individual researchers or of teams of research-
ers. As such, it also serves to distinguish the general
concept of epistemic opacity from a related issue con-
cerning the concept of black boxes in systems ana-
lysis.30 Black box theory is in principle a
mathematical approach that allows for schematization
of non-linear functions between an input and a result
without the need to know exactly what the internal
structure of the function is or without particular
regard to the nature of the input or results (Bunge,
1963). It was later adopted by emerging fields in the
study of complex systems (Ethiraj and Levinthal,
2004) and business related issues concerning organiza-
tional structures and product design (Brusoni and
Prencipe, 2001). Although black boxes and epistemic
opacity are related in that both are issues concerning
gaps in knowledge of a given system, they are very dif-
ferent concepts. In particular, black box theory is more
of a pragmatic approach to an information system that
can function in a need-to-know basis. That is, it is an
attempt to schematize in a formal manner an informa-
tion system with the minimum amount of information
possible being transmitted from one state to the next
and to do so despite possible limitations. Epistemic
opacity on the other hand is concerned with more
than just the pragmatic constraints associated with spe-
cific methods or technologies. It is about the nature of
knowledge per se and in particular about the ways in
which knowledge can be conveyed or can fail to be so.
Black boxes are just one of the many instances of epi-
stemic opacity. In other words, all black box problems
are instances of epistemic opacity but not every
instance of epistemic opacity is a black box. But more
importantly, not all black boxes are instances of essen-
tially opaque processes.

Error

Humphreys’ argument that computational methods
suffer from epistemic opacity is strengthened when we
consider the role of software error (see also
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Barberousse and Vorms, 2014; Floridi et al., 2015;
Newman, 2015).31 In this section, we examine the role
of error in software intensive systems and explain why
traditional approaches to handling error in a scientific
context fall short. As briefly stated above, by error we
simply mean the many ways in which a software system
may fail. This may include erroneous calculations,
implementations, results, etc. The important point
here is not error per se but our epistemic relation to it
in the context of inquiry.

Scientific claims are often—if not always—of a stat-
istical nature (Mayo and Spanos, 2010). Increasingly
sophisticated manipulation, interpretation, and accu-
mulation of data have made the probabilistic aspect
of scientific claims become more pressing (see Keller,
2003; Metropolis and Ulman, 1949). In light of the
statistical nature of contemporary science Deborah
Mayo has called for a new philosophy of statistical sci-
ence in order to account for error and probability
inherent in modern scientific inquiry (Mayo and
Spanos, 2010). Mayo proposes what she calls ‘severe
testing’. A method by which a given hypothesis is said
to have various degrees of reliability depending on how
likely it is to have been falsified by a test. Unlike trad-
itional accounts of confirmation, error-based statistical
assessments such as Mayo’s measure the ability to
choose from one hypothesis over another by virtue of
the extent of error-detecting testing methods applied to
it. The degree to which these tests are able to detect
error determines their severity. A hypothesis that is
tested with methods that have a high likelihood of find-
ing errors in it is said to pass a severe test. Severity is
formally defined as follows:

A hypothesis H passes a severe test T with data x0 if
1. x0 agrees with H, and
2. with very high probability, test T would have pro-

duced a result that agrees less well with H than does
x0, if H were false or incorrect.

Informally, the severity principle suggests that a
high degree of trust is warranted in cases where a
hypothesis is not shown to be wrong in the face of
tests that have a high probability of finding it wrong if
the hypotheses were indeed false (Parker, 2008).
Further, Mayo suggests that concentrating on choos-
ing among highly probed hypotheses is crucially dis-
tinct from those approaches that rely on highly
probable ones. In the former case we have a stronger
positive account for falsification.

Wendy Parker (2008) argues that Mayo’s error-sta-
tistical approach, and in particular her severity prin-
ciple can help make the case for the epistemic import
of computer-based methodology in science. This is
because, according to her, Mayo explicitly accepts

simulations as a method that helps scientist assess
whether some source of error is absent in an experiment
by estimating ‘‘what they would be more or less likely
to observe if [any] source of error were present in the
experiment.’’ (Parker, 2008) Thus, we can have severe
testing of hypotheses concerning possible sources for
error in a particular experiment. For now, this first
step allows Parker to make the case that computer-
based methods are a reliable source of evidence at
least with respect to sources of error in experiments
given Mayo’s account. When computer-based methods,
such as simulations, are about a system that is not a
conventional experiment and for which we have no
real-world access the same approach can be applied
according to Parker. Parker appeals to Mayo’s account
in the following way.

Simulation results are good evidence for H to the
degree that:

(i) results fit the hypothesis, and
(ii) the simulation wouldn’t have delivered results that

fit the hypothesis if the hypothesis had been false
(Parker, 2008).

For Parker one task is to ensure that (ii) holds. If (ii)
holds then we can apply Mayo’s notion of evidence to
simulation experiments. This is even if such simulations
are of the kind that cannot be immediately compared to
actual data from a system, like those simulations that
have to do with future states of a system. An example
of these simulations could be computer experiments
seeking to predict future weather patterns (Parker,
2008). According to Parker, appeal to lower level sever-
ity tests, as explained above, can ensure that (ii) is the
case. That is, by making sure that errors that could
have been part of the simulation are absent from the
simulation we can then say that simulations are good
sources of evidence and thus we can rely on them.
Parker offers a taxonomy of error to help supplement
her point. Although this taxonomy in itself may have its
limitations and problems (i.e. see Floridi et al., 2015)32

Parker thinks that while it is unclear that there are in
fact procedures that allow us to assess the magnitude of
some error’s impact,33 the list nevertheless provides evi-
dence that ‘‘we do have some understanding of the dif-
ferent sources of error that can impact computer
simulation results.’’ (Parker, 2008)34

Path complexity and Big Data

As discussed above, Big Data is a software-intensive
science. Given this dependence on software, as we will
see below, testing applications of Big Data using con-
ventional statistical inference theory (CSIT) is not an
option. The reason for this is primarily due to the role
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of conditionality in software (Horner and Symons,
2014; Symons and Horner, 2014).

The challenge is that for every conditional statement
in piece of code the number of possible paths that must
be tested grows. Pieces of code frequently contain con-
ditional statements or their equivalents, that is, they
take the form of ‘‘if. . .then/or else’’ statements. Thus,
if a 10 line-long program has a conditional of this kind
the lines to be tested would doubled to 20. Each of these
conditionals augments the lines of code to be tested
exponentially. Each conditional line of code alters the
number of paths available to a given program. This
increases the program’s path complexity. Assessment
of error distribution directly relates to degrees of reli-
ability when testing software. Standard statistical tech-
niques demand some degree of random distribution in
the sample of interest. This element of random distri-
bution is not available in the context of software test-
ing. While random distributions are a reasonable
assumption in natural systems, this is not the case in
software systems since it is not feasible ahead of time to
exclude the possibility that the distribution of error is
caused by a non-random element in its constitution.
Thus there is simply no way, other than by assumption
or by exhaustive testing, to know whether or not a par-
ticular error distribution in software is the product of a
random element or not (Symons and Horner, forth-
coming). Thus, there is no way, other than by mere
(unwarranted) assumption, to legitimately deploy stat-
istical techniques that demand that the error distribu-
tion in a system have some degree of randomness to it.
As exemplified by the discussion on path complexity,
brute force attempts at exhaustive testing, as Symons
and Horner argue, for any conventional program is an
impractical task given meaningful time constraints.

Even the simplest computer programs have 1000þ
lines of code and an average of one conditional state-
ment per every 10 lines. Thus, for example, the time
resources required for testing a program with 1000
lines of code with this average of conditionals would
exceed many-fold the age of the universe.35 A program
consisting of 1000 lines of code would be a very small
program for anything in the Big Data context. Most
computer programs used in these context are large
and in scientific applications more generally are com-
monly in the hundreds of thousands of lines of code
(Horner and Symons, 2014; Symons and Horner, 2014).

The most important consequence of the path-
complexity catastrophe is the fact that statistical meth-
ods no longer apply in a straightforward manner to the
detection of error in software system.

It may be countered that modularity in software sys-
tems may be a way to diminish the impact of path com-
plexity and thus reduce the epistemic opacity related to
it.36 Perhaps, it can be argued, by breaking a system

into epistemically manageable modules we may indeed
be able to carefully test each and every one of them
independently and thus have a reliable error assessment
of the system as a whole. If this is the case then, we can
independently rely on each of them and by extension on
all of them together. At first sight this sounds like a
plausible approach to the problem of path complexity
in particular and epistemic opacity in general.
However, path complexity grows at catastrophic rates
even given relatively small numbers of lines of code.
The interplay between modules will introduce untested
paths even in cases where the modules themselves are
reliable. The discussion above about the obstacles to the
deployment of conventional statistical methods shows
that even at a smaller scale the only truly available test-
ing technique for assessment of error distribution would
be an exhaustive brute force one. Even if we were to
grant that massive modularity and exhaustive testing
was a viable method for software design and testing,
integrating modules will result in epistemic opacity.

Although modularity may indeed make black boxes
a bit more manageable, the dynamics among the mod-
ules would quickly evolve into a particularly complex
system with its own problems. One immediate concern
is the assumption that software (and indeed any other
modular system) develops as a cohesive, all-encompass-
ing unifying endeavor rather than as a patchwork
(Winsberg, 2010).

While unification and modularity can be part of a
protocol for future software development, it is not cur-
rently in place and the question remains as to whether it
can be implemented in scientific inquiry and the large
software systems that already underlie it. Take climate
modeling for example. When considering climate
models, Winsberg (2010) cites at least three kinds of
uncertainty that have to be taken into consideration:
structural uncertainty, parameter uncertainty, and
data uncertainty. The most important source of uncer-
tainty for our current discussion is structural uncer-
tainty of the model itself, which includes
considerations regarding ‘‘a plethora of auxiliary
assumptions, approximations, and parameterizations
all of which contribute to a degree of uncertainty
about the predictions of these models.’’ (2010) Each
of these assumptions, approximations, and parameter-
izations is based upon segments, or modules of soft-
ware code that implement them. Let us for a second,
in a very simplistic and rough way, think of each of the
many modeling layers that go into the software that
predicts climate as modules. Even if we exhaustively
specify/test each module, the interactions among mod-
ules, their epistemic transparency, and therefore their
reliability as a functioning system them won’t be as
straightforward. Consider, for example, that after
70þ years of climate modeling the complexity
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surrounding the integration of so many different (one
may argue modular) systems/models has only allowed
scientist to claim a degree of accuracy that averages
merely a day per decade (Bauer et al., 2015). That is,
after seven decades, and the use of the most sophisti-
cated and powerful software, the integration of the
multiple modules of climate modeling is anything but
done. If anything this example elucidates the difficulty
of managing integration of large complex simulations
systems. Furthermore, it exemplifies how modularity
may not even be an option in scientific practice.

Example

There has been a recent trend in the past decade or so to
use the vast amount of data generated by internet
searches in attempts to create predictive models. These
models range from prediction of American Idol winners
(Ciulla et al. 2012), political election outcomes,
unemployment rates, box-office receipts for movies,
and song positions in charts (Goel et al., 2010). But per-
haps the best known among these attempts has been the
flu tracker function: GFT. Researchers at Google
expected the data from accumulated queries to yield cor-
relational patterns that, all by themselves, would tell a
story about the presence and spread of the disease (Lazer
et al., 2014; Lazer and Kennedy, 2015). GFT exemplifies
the spirit of so-called empiricist interpretation of Big
Data, discussed above. However, the researchers’
hopes did not materialize. Although some correlations
were discovered, Google’s flu tracker continued to con-
sistently generate spurious correlations and, more ser-
iously, reporting false flu numbers (Lazer et al., 2014;
Lazer and Kennedy 2015; Olson et al., 2013).

GFT was designed to predict, in real time, the
advent of a flu epidemic. The innovative aspect of this
tracker was its reliance on the relatively loose search
queries typed into Google’s search engine. These data,
they hoped, could serve as the basis for predictions
concerning the behavior of the epidemic (Cukier and
Mayer-Schoenberger, 2013). The core idea behind this
project was to provide an alternative to conventional
epidemiological surveillance and prediction systems
which relied on medical reports of Influenza-like ill-
nesses (ILI’s) from regional clinics to the Centers for
Disease Control and Prevention (CDC’s). In particular
it hoped to foresee an epidemic outbreak from search
queries that would indicate a strong presence of flu-like
symptoms based on specific flu-related words and com-
binations of these words typed into the search engine.
This, they argued, could be done if not in real time, at
least faster than reports from patients seeking care at
local clinics, which could take a number of days.
However, after its launch as an open tool for flu sur-
veillance in 2008 there were two seriously embarrassing

moments for GTF. One of them was the fact that it
failed to predict the A/H1N1 flu pandemic in 2009.
This led Google to actually modify its original algo-
rithm in an attempt to get more accurate results.
However, the second problem was that GTF suffered
from general gross overestimation. In particular, it
overestimated by a large margin 100 times out of 108
during the flu season between 2011 and 2012 (Lazer
et al., 2014) and it greatly overreported flu cases
during the 2012 and 2013 A/H3N2 pandemic (Olson
et al., 2013).

It is by now well known that Google’s flu tracker
failed to achieve what it was designed to do, namely
predict and report ILI’s better and faster than the con-
ventional surveillance tools available. It simply didn’t
predict at all or predicted erroneously. Because of this,
the project is often taken to exemplify ‘‘Big Data
hubris’’ (Lazer et al., 2014), the often underlying
assumption that large amounts of data and the patterns
that are discovered through its analysis can yield results
independently from or without the aid of principled
theoretical underpinnings.

Although the disappointing errors of GFT have been
rigorously documented andmeasured (Olson et al., 2013;
Salzberg, 2014; see the supplemental material in Lazer
et al., 2014) what is most interesting to our discussion is
the ambiguity regarding their nature and source. Many
of these studies focus particularly on the margin of error
but are not clear about what caused the errors. Some
researchers (Cook et al., 2011) for example, ascribe the
errors to issues like seasonality, the fact that outbreaks
happened outside of what is commonly thought to be flu-
season. This meant that common flu-related terms were
less likely to have been used in queries to the search
engine.37 Others ascribe the errors to differences of age
distribution and geographical heterogeneity occurring
during model fitting periods of GFT (Olson et al., 2013).

Lazer et al. (2014) offer two possible culprits. The
first is due to neglect of traditional statistical tech-
niques. Some of the error here can be fixed once GFT
incorporates conventional statistical methods that can
provide correlational filters. These methods inform
modern pattern finding techniques in traditional
research beyond Big Data (Lazer et al., 2014). If con-
ventional statistical methods were deployed along with
the GFT a reflective equilibrium between data from
ILI’s surveillance and search terms could better cali-
brate GFT. Given the results presented by Horner
and Symons the suggestion to take statistics seriously,
while generally sensible, might have additional compli-
cations that are beyond the scope of this paper.

Lazer et al. (2014) suggest that another possible
cause for the errors in GFT is what they call algorithm
dynamics undergone by Google’s search algorithm.
Algorithm dynamics, according to them, are
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modifications to Google’s search algorithms that are
introduced in order to enhance the functionality of
the search engine. They are of two kinds: blue team
dynamics, those that the service provider deploys for
greater efficiency and usefulness of search results; and
red team dynamics, those done by users of the service
for personal benefit such as prominence and visibility.
According to them, blue team dynamics are what is
most likely behind GFT’s errors. The evidence that
they cite is a correlation between reported changes to
the algorithm and the surge of predictive errors in
GFT. According to the authors, what makes the
system yield errors is the way in which search results
skew the queries themselves, queries which are in turn
used to extract the terms for the GFT to analyze. That
is, the search results of Google’s search engine influence
the prominence of search terms that users input and
these skewed inputs then are used by GFT to predict
the presence or absence of the flu (Lazer et al., 2014).

That results generated by the search engine can modify
queries and input from the very source that is supposed to
be furnishing the data for prediction is troublesome
enough. However, there is something deeper going on.
Although Lazer et al. (2014) define the blue team algo-
rithm dynamics undergone by Google’s search algorithms
in the context of Google’s particular business model, one
can extend the term beyond Google or GFT. Other social
media platforms engage in algorithm dynamics too, in
particular blue team dynamics (Lazer et al., 2014). In
fact, algorithm dynamics, insofar as they are defined as
the changes made to any software product by those
designing it, affect all aspects of software production
and development. These modifications include model fit-
ness processes and functional additions to the underlying
software that are necessary to its proper functioning.
Thus, algorithm dynamics are an essential feature of the
kind of artifact that software is (Holzmann, 2015) and not
merely a product of arbitrary human intervention.

Given the extent and scope of these dynamics in Big
Datamore generally, we have a bigger issue on our hands
than merely biased data gathering. In particular the
issues discussed in ‘‘The epistemic status of Big Data’’,
‘‘Error’’, and ‘‘Path complexity and Big Data’’ sections:
epistemic opacity due to sheer volume of people, number
of processes, legacy code, and path complexity catastro-
phe given the number of lines of code involved in projects
of such magnitude are at play. But the challenge is not
merely related to product development and modifica-
tion. The epistemically relevant feature of this cycle of
updating software results from our inability to test for
error and our dependence on systems that are susceptible
to it. In other words, this is an issue of knowledge acqui-
sition, reliability, and, therefore, trust.

The software behind GTF and similar Big Data pro-
jects falls prey to the path complexity catastrophe as

described by Symons and Horner. Whatever efforts we
introduce tomitigate error in these systemswill be under-
mined by the fact that they incorporate a vast number of
individualmachines and computationalmethods to yield
even the simplest of results. And as discussed above, even
if we characterize the problem in terms of modules, the
process is highly unlikely to become less opaque.

Discussion

Issues of path complexity and epistemic opacity are
more than merely abstract theoretical preoccupations.
As stated in the introduction to this article, some of the
limitations and risks involved in the use of computa-
tional methods in public policy, commercial, and scien-
tific contexts only become evident once we understand
the ways in which these methods are susceptible to
error. In the broader social and political context, a pre-
condition for understanding the potential abuses that
can result from the deployment of Big Data techniques
by powerful institutions is a careful account of the epi-
stemic limits of computational methods. A clear sense
for the nature of error in these systems is essential
before we can decide how powerful they should
become and how much trust we should grant them
(see for example Paparrizos et al., 2016). By way of
illustration, we have focused our attention on the limi-
tations of GFT as a predictive tool that can be a sup-
plement to ILI’s surveillance. The consequences of
overestimation in this context are not as immediately
troubling as the consequences for other systems that are
in use in governmental and military contexts. For
example, if we relate our discussion to Software
Studies research, such as that of Louise Amoore for
example, we can see the immediately troublesome
implications that a conventional account of epistemic
trust on Big Data systems could have. In her research
(Amoore, 2011), Big Data systems are in charge of cal-
culating and assessing the security risks posed by indi-
viduals flying from one part of the world to another.
Without having a proper understanding of the nature
of error inherent to these systems, assessing whether
they are flagging the right people, or the right number
of people becomes ever more challenging.

Debates concerning the epistemic status of Big Data
in the Critical Data Studies literature must take account
of the nature of error in software intensive contexts. We
have shown that an account of error management and
reliability can be profitably introduced into the agenda
of Critical Data Studies. Symons and Horner’s concept
of path complexity for example, highlights the limita-
tions of testing given intrinsic features of software. The
problem of reliability and the changing character of trust
in the context of Big Data projects pose an ongoing
challenge for Critical Data Studies.
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Notes

1. By taking the epistemic status of Big Data as the starting

point, we should not be understood as claiming that the
users of these technologies are motivated primarily by the

pursuit of truth.
2. Chris Anderson’s provocative (2008) article ‘‘The end of

theory: the data deluge makes the scientific method obso-

lete’’ is widely cited in this context although as Martin
Frické (2015) notes, ‘‘apparently Anderson never believed

or advocated the theses of his own paper but wrote it to

provoke response’’ (see also Norvig, 2008).
3. More recently the pitfalls associated with atheoretical

uses of Big Data have become clear even to large corpor-
ate interests like IBM (Marr, 2015). In 2015, Marr con-

sidered a Data Guru by the industry participated in an

interview for IBM’s community podcast. In it, he dis-
cusses the main point of his forthcoming book. He

emphasized that the full resolution, ‘more means more’

approach to Big Data is misguided. The dynamic nature
of Big Data problems require it to collect, analyze, and

solve issues in real time. This means that old data may

not be as helpful to solve current problems. More inter-
estingly, he thinks that strategic inquiry before collection

is the new way to go. This position stands in sharp con-

trast to the ‘‘death of theory’’ thesis espoused by advo-
cates of the unrestricted correlation camp. See also

Jacobs (2009) for a discussion of the importance of ana-

lysis in Big Data. What he calls ‘‘the pathologies of Big
Data’’ are due to an uncritical attitude towards accumu-

lated data.
4. By ‘‘error’’ we simply mean to encompass the wide range

of ways in which a software system may fail. This may

include erroneous calculations, implementations, results,
etc. The important point here is not errors in coding per

se but the epistemic implications of those errors in the

context of inquiry. Thus, error detection and correction
are the focus of this paper. For a more detailed account

of error in software see Parker (2008) and Floridi et al.

(2015).
5. In 2009, Adam Jacobs describes the development of

increasingly powerful computing technology and argues
that the challenges associated with Big Data are due to

analysis rather than size ‘‘The pathologies of Big Data are

primarily those of analysis. This may be a slightly

controversial assertion, but I would argue that transac-
tion processing and data storage are largely solved prob-
lems.’’ (39)

6. Most publications discussing Big Data over the past five
years have praised the predictive power of the new meth-
ods and the seemingly unprecedented insights brought by
the visualization techniques that it enables. Some have

adopted a skeptical stance towards the commercial hype
surrounding Big Data (The most sophisticated of these
include Bollier and Firestone, 2010; Boyd and Crawford,

2012; Kitchin, 2014).
7. The use of the term ‘empiricist’ is only marginally related

to views that philosophers would recognize as empiricist.

A better label for this cluster of views might be ‘‘atheore-
tical’’ or ‘‘anti-theoretical’’.

8. He quickly dismisses the Kuhnian approach by saying

that paradigmatic accounts are overly ‘‘sanitized’’ and
‘‘linear’’ accounts of scientific inquiry (2014).
Nevertheless, he endorses the Kuhnian notion of ‘‘para-
digm’’ as useful in the Big Data debate.

9. Cukier and Mayer-Schoenberger argue the volume size in
Big Data brings about three drastic changes to data ana-
lysis: unrestricted sampling (in accordance with (i)

above), tolerance of inaccuracy as a tradeoff of the vast-
ness of possible correlations, and lastly giving up on ‘‘our
quest to discover the cause of things’’ in exchange for

predictive prowess. Although some of these correlate
with Kitchin’s list, we think that the question about
whether scientific inquiry can do away with causal insight
is a very important one that is not discussed carefully

enough in the literature and that is worthy of a paper
in and of itself.

10. Thus, we can say that (1) is implausible given that in a

dynamic real world/real time problem N ¼ All as a
sample is very difficult to obtain/define for problems of
practical interest.

11. Although it is widely acknowledged that the ‘‘end of
theory’’ claims are hyperbolic at best (Boyd and
Crawford) (Bollier and Firestone, 2010), most of the criti-

cism is anthropocentric and social in nature. That is to
say, as discussed above, it often makes reference to some
aspect of social epistemology such as individual and col-
lective biases.

12. Longino (1990) points out that these are features that
have a long history in the development of science as it
grew from highly individual projects in the 1800s to

multidisciplinary institutional ventures. However,
Contrary to Kitchin, Boyd and Crawford, Longino rede-
fines objectivity as a product of the social character of

science. For her, an addition of subjectivities tends to
neutralize particular biases and sift out highly individua-
lized values and preferences. So, for her, objectivity is not
absent in the scientific process, but rather stems from a

different source than conventionally thought.
13. We are grateful to an anonymous referee for encouraging

us to respond to Amoore’s work on security.

14. For a thorough overview of the many dimensions of
interest in philosophy of computation see Rapaport
(2015); for an interesting analysis on function and mal-

function in software see Floridi et al. (2015).
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15. One of the biggest questions arising from the use of com-
puter simulations in science is whether they are part of the
scientist’s empirical toolkit (Barberousse et al., 2009;

Floridi, 2012; Winsberg, 2010).
16. She cites the study of shock wave behavior and neutron

diffusion as topics to which Ulam, von Neumann, Fermi
and others applied novel computational techniques.

17. Independently of the computations themselves though,
the method was a novel statistical approach to serial pro-
cesses that could not be made faster using the clas-

sical—non statistical—approach even by using multiple
computers (Metropolis and Ulam, 1949). Thus the
method wasn’t only adding speed but also a conceptual

shift towards probability theory that brought with it
novel epistemic challenges (Winsberg, 2010).

18. See also Symons (2008) for further discussion of the rela-

tionship between computational modeling and
explanation.

19. For a very different perspective on the relationship
between simulation and theory see Morrison (2015). On

Morrison’s view simulations can play a role equivalent to
experimental evidence in relation to scientific theories.

20. What she has in mind here are models, like cellular auto-

mata that are not attempts to capture some specific phys-
ical phenomenon. This third stage is targeted towards
‘‘phenomena for which no equations, either exact or

approximate, exists (as, e.g., in biological development),
or for which the equations that do exists simply fall short
(as, e.g., turbulence).’’ (2003: 210; see also Symons, 2008).

21. It is important to note that for Fox-Keller, this third sense

of simulations is particularly important because its aim is
no longer to simulate neither differential equations nor
fundamental (albeit idealized) particles of a given system

but rather the phenomenon itself. That is, cellular auto-
mata, for example, were simulations that described and
elucidated patterns about the systems carrying out the

simulations themselves. Although cellular automata are
more famously considered to be a simulation similar to
those discussed on the second stage, this was only a con-

sequence of the visualization similarities with real life cell
formation. Originally however, they were constructed to
simulate themselves. Fox-Keller describes this confusion
by stating that ‘‘despite its explicitly biological allusion,

[cellular automata] was developed by—and for the most
part has remained in the province of—physical scientists.’’
(2003) The resemblance to biological process of self repro-

duction was only noted later.
22. The question of whether Big Data is indeed a suitable

scientific instrument is still an open question (Lazer

et al., 2014), for example have the following to say
about Google’s flu tracker reliance on Big Data method-
ology: ‘‘The core challenge is that most big data that have
received popular attention are not the output of instru-

ments designed to produce valid and reliable data amen-
able for scientific analysis.’’ (Lazer, 2014)

23. Whether any computational simulation does involve

either the testing and/or the expanding of any given
theory and to what extent it may do so is the subject of
a vast and open philosophical debate. This is particularly

the case when computational simulations are taken to be

part of the empirical tools available to scientists (see for
example Barberousse et al., 2009; Barberousse and
Vorms, 2014; Winsberg, 2010).

24. As discussed below, Symons and Horner sought to dis-
tinguish SIS from non-SIS science by virtue of the degree
of conditionality present in both (2014; forthcoming).

25. So, for example the problem of understanding the Stokes

flow over a finite cylinder is analytically intractable as are
a range of other problems from fluid dynamics (see e.g.
Ferziger and Peric, 2012).

26. We must remember that one of the most important
aspects in the development of computational methods
for analysis of dynamic systems was their visualization

(Keller, 2003). In fact, some simulations, like cellular
automata, later came to be regarded as powerful epi-
stemic tools, somewhat analogous to natural systems,

because of the fact that their macroscopic properties,
that is their visual evolutions, resembled real patterns vis-
ible in cell formation. Fox-Keller ascribed this key insight
to joint work by Von Neumann and Ulam and further

cites (Toffoli and Margolus, 1987).
27. Bollier, for example, argues that visualization in the data

industry is a sense-making tool. He ties this to his criti-

cism of the ‘‘raw data’’ advocates and argues that many
of the insights drawn from Big Data can only emerge
when seen by an expert and seldom arise solely as a prod-

uct of numerical calculations. One example of this is how
Google research found that two out of three cows align
their bodies to the north pole just by observing images
from Google Maps. No machine, he argues, could have

done this alone. This is important in our context, not
because of the epistemic limitations on machine recogni-
tion, but rather because it shows the intrinsically visual

nature of so much of Big Data analysis and the correl-
ation this visualizations have with philosophical debates
about simulation.

28. This distinction matters because of the epistemic import
of the methods themselves. If simulation is closer to
theory, some say, then no novel knowledge can be gen-

erated from them. All we can reasonably expect are
coherence assessments of internal theoretical principles.
If simulations are like experiments, on the other hand,
then we have reasons to include them in our empiricist

toolkit (Barberousse and Vorms, 2014).
29. Furthermore, we must consider the possibility that in

adding new code to legacy code one may even be exacer-

bating its opacity.
30. We thank an anonymous referee for bringing to our

attention the similarity between black box theory and

epistemic opacity as well as mentioning modularity as a
possible response to the problem of epistemic opacity.

31. Some efforts have been made to provide a taxonomy of
error in software, however they focus on external sources

such as inaccurate design. For a thorough review of mal-
function in software see Floridi et al. (2015).

32. For a detailed account of the degree to which this account

of error may figure in the software that underlies simula-
tions see Floridi et al. (2015). In it they argue that certain
kinds of error are only possible to a limited degree (a

type/token distinction) in software. Further they argue
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that such error is always from an external source. That is,

all of the errors listed above are external to the software

itself, since software will always do what it was designed

to do (whether the design fits the task intended for the

software is an external problem).

33. Parker makes some remarks concerning the limitations of

this approach: first she thinks that severe testing on simu-

lations is rare; second, she acknowledges that formal stat-

istical analysis of the kind used by Mayo to support

simulation processes has much work to do and whether

it ends up playing ‘‘as large a role (or the same role)’’ in

simulations remains to be seen; third, error directly

related to the model used to build the simulation is a

very hard problem, particularly considering that many

traditional/observational assumption go into such

models. She suggests an extra statistical approach to

deal with this last problem, however, for details that we

will explain below, this may not work either.
34. In so far as application goes, the severity principle, as for-

mulated by Mayo and as adopted by Parker’s in her dis-

cussion of computer simulations, is still a philosophical

principle at its core and as such it does its job mainly as

a background assumption at work when science is con-

ducted. That is, the principle is mainly a meta consider-

ation about what constitutes appropriate epistemic

support for a scientific hypothesis and how this may ultim-

ately be granted legitimization in the realm of scientific

explanation. We thank an anonymous reviewer for the

opportunity to clarify this.

35. For details of the argument, please see Symons and

Horner (2014).

36. Once again we thank an anonymous reviewer for bring-

ing this to our attention.

37. Researchers (Cook et al., 2011) believe that user’s search

terms change depending on the season even if the symp-

toms are the same. Given the common seasonal patterns

of flu pandemics, even if users were exhibiting flu-like

symptoms they would search for different terms in the

winter from those in the spring.
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